3 research outputs found

    Flower heads in Asteraceae—recruitment of conserved developmental regulators to control the flower-like inflorescence architecture

    Get PDF
    Inflorescences in the Asteraceae plant family, flower heads, or capitula, mimic single flowers but are highly compressed structures composed of multiple flowers. This transference of a flower-like appearance into an inflorescence level is considered as the key innovation for the rapid tribal radiation of Asteraceae. Recent molecular data indicate that Asteraceae flower heads resemble single flowers not only morphologically but also at molecular level. We summarize this data giving examples of how rewiring of conserved floral regulators have led to evolution of morphological innovations in Asteraceae. Functional diversification of the highly conserved flower meristem identity regulator LEAFY has shown a major role in the evolution of the capitulum architecture. Furthermore, gene duplication and subsequent sub-and neofunctionalization of SEPALLATA and CYCLOIDEA-like genes in Asteraceae have been shown to contribute to meristem determinacy, as well as flower type differentiation-key traits that specify this large family. Future challenge is to integrate genomic, as well as evolutionary developmental studies in a wider selection of Asteraceae species to understand the detailed gene regulatory networks behind the elaborate inflorescence architecture, and to promote our understanding of how changes in regulatory mechanisms shape development.Peer reviewe

    Effects of LED light spectra on lettuce growth and nutritional composition

    No full text
    Year-round greenhouse production in northern latitudes depends on the use of artificial lighting. Light emitting diodes provide a promising means to save energy during cultivation as well as to modify the light spectrum to regulate the growth and quality of the crop. We compared the effects of light emitting diode lighting with different spectral compositions on the growth, development and nutritional quality of lettuce (Lactuca sativa L. ‘Frillice’). We show that warm-white and warm-white supplemented with blue spectra provide equal growth and product quality compared to conventional high-pressure sodium lighting in the absence and presence of daylight. Our data indicate that for biomass accumulation, the far-red component in the light spectrum is more critical than green light or the red/blue ratio. Furthermore, we demonstrate that a red + blue spectrum increases the concentration of several vitamins in lettuce. However, biomass accumulation using this spectrum was insufficient when daylight was excluded.Peer reviewe
    corecore